
Manager Configuration

In this chapter we will go over the management tools available with Tomcat versions 3.x and 4.x. These
tools allow administrators to deploy web applications, view deployed applications, and finally undeploy
them. While these tasks can also be performed manually by editing Tomcat's configuration files, this
method requires Tomcat to be restarted. The manager application, however, helps in automating them
and also allows them to be performed on a running instance of Tomcat. This way, applications that are
already running are left undisturbed.

Sample Web Application
In this chapter, we will use a simple web application for testing the manager commands. This
application consists of nothing more than one HTML and one JSP file.

The HTML file (index.html) has a form that asks for the user's name and uses HTTP POST to send
the result to a JSP page:

<html>
 <head>
 <title>Hello Web Application</title>
 </head>

 <body>
 <h1>Hello Web Application</h1>
 <form action="/hello/Hello.jsp" method="POST" >
 <table width="75%">
 <tr>
 <td width="48%">What is your name?</td>
 <td width="52%">

7

Chapter 7

132

 <input type="text" name="name" />
 </td>
 </tr>
 </table>
 <p>
 <input type="submit" name="Submit" value="Submit name" />
 <input type="reset" name="Reset" value="Reset form" />
 </p>
 </form>
 </body>
</html>

The JSP page (hello.jsp) then prints a Hello <name> message. The <name> is the name that the user
entered in the index.html form:

<html>
 <head>
 <title>Hello Web Application</title>
 </head>
 <body>
 <h1>Hello Web Application</h1>

 <%
 String name = request.getParameter("name");
 if (name.trim().length() == 0) {
 %>
 You didn't tell me your name!

 <%
 } else {
 %>
 Hello <%=name%>

 <%
 }
 %>
 Try again?
 </body>
</html>

This web application will be deployed with the /hello context path, and therefore
http://localhost:8080/hello/index.html would be the URL to access it.

The commands for building the WAR file are:

$ cd /path/to/hello
$ jar cvf hello.war .

The /path/to/hello is the directory where the index.html and hello.jsp files reside.

Tomcat 3.x Administration Tool
Tomcat 3.x comes with an administration tool for performing simple administration tasks that allows us
to list all web application contexts and to remove/install web applications. In this section, we will go
over these and also see how permissions for the administration application are enabled. The version of
Tomcat used here is 3.3.1.

Manager Configuration

133

Enabling Permissions for the Admin Tool
To enable permissions for the Tomcat 3.x admin tool, run tomcat.bat/tomcat.sh with the
enableAdmin option, as follows. Here is the command for Linux:

$ cd $TOMCAT_HOME/bin
$./tomcat.sh enableAdmin
Overriding apps-admin settings

This rewrites the <Context> definition of the admin application
($TOMCAT_HOME/conf/apps-admin.xml), changing the trusted attribute to true, and thus
allowing it to administer other web applications:

<webapps>
 <!-- Special rules for the admin web application -->
 <Context path="/admin"
 docBase="webapps/admin"
 trusted="true">
 <SimpleRealm filename="conf/users/admin-users.xml" />
 </Context>
</webapps>

A web application with the trusted attribute switched on can access the internal objects of Tomcat
and manipulate them. This feature is used by the Tomcat admin application to perform actions like
removing and installing web applications, and examining data from user sessions. The trusted
attribute is false by default for security reasons.

After enabling the admin application, its password should be changed from the default "changethis"
password. The password is stored in the $TOMCAT_HOME/conf/users/admin-users.xml file (listed
below) as cleartext:

<tomcat-users>
 <user name="admin" password="changethis"
 roles="tomcat_admin,tomcat,role1" />
</tomcat-users>

Leaving the admin application enabled without the password changed from this default password is a
security risk.

There is no corresponding disableAdmin command for undoing this step – the administrator will have
to edit the $TOMCAT_HOME/conf/apps-admin.xml file, modify the trusted attribute to false and
then restart Tomcat.

admin Application Tasks
If Tomcat is running on a local machine, the admin application is accessible via the URL
http://localhost:8080/admin/. The host name and port number (localhost, 8080) in the URL should be
changed to the appropriate host and port for your installation. If we have just changed the trusted
attribute manually, or via the tomcat enableAdmin command, we need to restart Tomcat before we
can start using the admin application.

This admin page lists all the admin application tasks (shown overleaf). As mentioned earlier, access to
these tasks is restricted via a username/password that is specified in the admin-user.xml file. The
screenshot overleaf shows us the admin home page:

Chapter 7

134

List All Web Application Contexts
The first option of the admin application's index page is Context list. This option shows all the
deployed contexts (see the screenshot below):

Clicking on any item in the path column, we can see the attributes of the context as configured in the
app-[name].xml or server.xml files. The screenshot opposite shows the context attributes for the
example web application. We also can see session information (number of active/recycled sessions,
default timeout) for each application context via the Session info link:

Manager Configuration

135

Add Web Application Context
The Context Admin link on the admin home page leads us to the Context Administration page. The Add
Context option here adds a web application context to a running instance of Tomcat. This is done by
adding a new Context entry to Tomcat's internal runtime representation of application contexts (the
org.apache.tomcat.core.ContextManager class). Tomcat's configuration files are not modified.

This option is useful for development purposes – Tomcat developers can temporarily add a context, test
it, and then remove it. The option for removing a context is covered in the next section.

We can specify the context path (for example /hello for the hello web application mentioned earlier),
and the document base. The web application is then started up without requiring Tomcat to be restarted:

Chapter 7

136

The document base is relative to the Tomcat install directory – therefore, in the screenshot shown
previously, the path webapps/hello refers to $TOMCAT_HOME/webapps/hello. This means that the
expanded web application needs to be copied inside the Tomcat install directory – the recommended
place is $TOMCAT_HOME/webapps.

We could have placed the web application directory outside the $TOMCAT_HOME/webapps directory,
for example, under $TOMCAT_HOME itself. If we did this, the web application is not loaded if Tomcat is
restarted. This is because Tomcat loads only those web applications that are present in
$TOMCAT_HOME/webapps. If they lie elsewhere in the filesystem, they need to be configured via
explicit <Context> entries in the server.xml file.

The options that we can specify for a new context are limited to the path and document base. The other
attributes get assigned defaults – reloadable set to true, trusted set to false, and so on. If we
want to set an attribute that is not the default, we have to add explicit <Context> entries for the
application in server.xml and restart Tomcat.

If we add an application that already had a <Context> entry configured in server.xml (for example,
if we had removed it earlier, and are adding it again), it still gets default <Context> attribute values –
the server.xml is not read.

The admin application does not do any error checking, therefore if we do an Add Context twice, or
supply an invalid document base, a success message is still shown in the browser window. Any internal
Tomcat errors while adding the context get logged to the standard log files.

Disabling Web Applications
The option to disable a web application context is accessible via the View All Contexts page and the
Context Administration page. This option is called Remove or Remove Context, but the name is
deceptive. This option:

❑ Temporarily disables the web application by removing its context from the in-memory
representation of the web application contexts. The internal Tomcat class that maintains the
list of application contexts is org.apache.tomcat.core.ContextManager, and the
Remove Context option deletes the context from it.

❑ Shuts down the web application.

❑ Doesn't remove the web application from the $TOMCAT_HOME/webapps directory, or remove
the apps-[name].xml configuration file, if any, from the $TOMCAT_HOME/conf directory.
Hence, if we restart Tomcat, the web application is loaded up again.

As we mentioned in the previous section, the Add and Remove Context options are useful for
development purposes.

In the Context Administration page, we need to specify the name of the context (example /hello or
just hello for the hello web application or an empty string for the ROOT context) to remove that
context. The other parameter for this option, Virtual Host, can be left empty. This parameter is ignored
by the admin application.

Manager Configuration

137

The screenshot below shows the hello web application being disabled:

Tomcat 4.x Manager Application
The Tomcat manager application is a web application that allows us to carry out various system
administration tasks related to deploying, undeploying, and managing a web application.

Administrators interact with the manager application over HTTP. In Tomcat 4.1, administrators can
also run the manager application tasks via Ant scripts. Using the manager application through Ant
allows developers to build, deploy, and test web applications easily – we show how this can be done in
the Managing Applications with Ant section later in the chapter.

Access to the manager application is restricted to authorized users. This prevents unauthorized users
from undeploying (or deploying) applications, or performing any other operation that they shouldn't. In
the next section, we will see how this access control is configured. We will then examine the other
configuration parameters for the manager application. Finally, we will describe all the manager
application commands in more detail.

A summary of the tasks that the manager application can do is listed below. Some of these tasks are
new features in Tomcat 4.1, and are not available with Tomcat 4.0:

❑ Deploy a new web application (Tomcat 4.1 only)

❑ Install a new web application

❑ List the currently deployed web applications, as well as the sessions that are currently active
for those web applications

❑ Reload an existing web application

❑ List the available global JNDI resources (Tomcat 4.1 only)

Chapter 7

138

❑ List the available security roles (Tomcat 4.1 only)

❑ Remove an installed web application

❑ Start a stopped application

❑ Stop an existing application, but do not undeploy it

❑ Undeploy a web application (Tomcat 4.1 only)

❑ Display session statistics

In the list above, we use the terms "install" and "deploy". At first glance, these look the same, however,
there are differences as far as the Tomcat manager application is concerned.

When we deploy a web application, it makes permanent changes to Tomcat's configuration, and hence
the web application is available across Tomcat restarts. The install option however, does not make
permanent changes to Tomcat's configuration. Thus the install command is useful for test purposes.
We can build a web application, install it, and then try it out. Once it is sufficiently robust, we can run
the deploy command to permanently place it into a Tomcat installation. In some ways, install and
uninstall are similar to the Add Context and Remove Context operations in Tomcat 3.x.

Secondly, the deploy command allows us to deploy a web application remotely. With install, the
web application JAR file (or the extracted web application path) must be on the same machine as that of
the Tomcat instance.

The undeploy and uninstall commands undo the effects of deploy and install – we shall see
these later in the section.

However, to add to our confusion, Tomcat 4.0 has a command called install that actually has an
effect similar (though not identical) to the deploy command in Tomcat 4.1. The Tomcat
documentation, to help matters, calls it the command to deploy applications (even though the name of
the command is install). We shall shed some light on this later in the section.

Why do we need a special manager application to deploy and undeploy applications? We can deploy
an application manually too. The ways to do this are:

❑ Add a <Context> entry in Tomcat's server.xml configuration file. This allows us to place
the web application in a location other than the default $CATALINA_HOME/webapps
directory.

❑ Copy the entire application directory into the $CATALINA_HOME/webapps directory. The
server.xml file does not have to be edited in this case.

❑ Copy the WAR file for the application into the $CATALINA_HOME/webapps directory. In this
option too, the server.xml file does not have to be edited.

However, all these ways of deploying require us to restart Tomcat. When we do this via the manager
application, Tomcat is not restarted and hence the other running web applications are not affected.
Another advantage of using the manager application is that we can install remotely. That is, we do not
have to transfer the web application directory (or WAR file) via FTP or some other means to the host
machine running Tomcat – the deploy command takes care of transferring the web application WAR
file from our local development machine to the remote machine running the Tomcat server.

Manager Configuration

139

The latest version of the 4.1.x line (Tomcat 4.1.7 Beta) at the time of writing, added a
new web-based user interface on top of the manager application. This does not affect
the existing application functionality and usage (explained below), but provides a
simplified interface. We will be covering this interface later in this chapter.

Enabling Access To the Manager Application
Before using the manager application, we need to configure the server to allow us access. Access to this
application is controlled via a security realm (realms were discussed in Chapter 5).

Tomcat comes configured with the memory realm by default. In this case, the usernames and their
supporting information are stored in memory and are initialized at startup from an XML configuration
file ($CATALINA_HOME/conf/tomcat-users.xml) kept on the filesystem.

We need to edit this file to add a user with a role of manager. In the entry below, the username and
password for this role is admin and secret respectively.

In Tomcat 4.0:

<tomcat-users>
 <user name="admin" password="secret" roles="manager" />
 ...
</tomcat-users>

And in Tomcat 4.1:

<tomcat-users>
 <role rolename="manager"/>
 ...
 <user username="admin" password="secret" roles="manager" />
 ...
</tomcat-users>

We need to restart Tomcat to make it re-read the tomcat-users.xml file. We are now ready to use
the Tomcat manager application. If our setup was successful, the URL
http://localhost:8080/manager/list will lead to a prompt for a username and password.

After entering the username and password we should see the applications currently deployed listed in
the browser:

Chapter 7

140

As we can see in the screenshot, the response for a successful command execution begins with an 'OK'
string. A missing 'OK' is an indication of failure, and the rest of the response page gives the reasons.
We will go over the possible causes of failure for each command later in the chapter. The response page
is in the text/plain format, that is, it contains no HTML markup.

The data fields returned in a manager command response are always delimited by the ":" character. In
the screenshot for the list command shown previously, each line has the (unique) context path of the
web application, the status (running or stopped), and the number of active sessions for the application.
In Tomcat 4.1, the document base for the web application is also shown.

These conventions allow for scripts to be written that take the output of the manager command and
perform appropriate actions.

Note for Tomcat 4.1 On Windows
During installation of Tomcat 4.1 on Windows, the installer asks the user for the admin username and
password. The username and password entered at install time are used to generate entries for the
tomcat-users.xml file. Hence, we do not have to do any configuration in this case, except if we need
to add another user with manager privileges or need to change the manager password.

Manager Application Configuration
In the previous section, we looked at tomcat-users.xml that defines the username and password for
the manager role. The other manager application-related configuration parameters are the manager
context entry and the deployment descriptor.

We do not have to make any changes here for the manager application to work – the settings are
configured by default. We can, however, modify these to our requirements – for example, change the
security constraints for the manager application, the authentication mechanism for users in the
manager role, or even change the name of the role from manager to some other name if required.

Manager Application Context Entry
In Tomcat 4.0, the manager context is configured in the same way as the other application contexts.
The following is the default configuration for the manager application from the
$CATALINA_HOME/conf/server.xml file:

<!-- Tomcat Manager Context -->
<Context path="/manager" docBase="manager" debug="0" privileged="true"/>

In Tomcat 4.1, the configuration information for the manager application gets picked up from the
$CATALINA_HOME/webapps/manager.xml file. The default manager context from the configuration
file is listed below:

<Context path="/manager" docBase="../server/webapps/manager"
 debug="0" privileged="true">

 <!-- Link to the user database we will get roles from -->
 <ResourceLink name="users" global="UserDatabase"
 type="org.apache.catalina.UserDatabase"/>
</Context>

Manager Configuration

141

In the context, we specify the context path for the manager application via the path attribute (the
manager application can be accessed as http://host:port/manager) and the document base directory for
the web application via the docBase attribute ("../server/webapps/manager"). The privileged
attribute is set to true – this enables the application to access the container's servlets. This attribute is
false for a normal web application deployed in Tomcat. The <ResourceLink> element creates a link
to a global JNDI resource database from where the usernames and roles are picked up.

Manager Application Deployment Descriptor
Earlier we looked at the tomcat-users.xml file that defined the username and password for the
manager role. We will now see how the security constraints for this role are specified. The deployment
descriptor for the Tomcat 4.0 manager application is $CATALINA_HOME/webapps/manager/WEB-
INF/web.xml.

In Tomcat 4.1, the web.xml is in $CATALINA_HOME/server/webapps/manager/WEB-INF.

The web.xml defines, among other things, the security constraints on the manager application. The
snippet below describes the default security constraint definition for the manager web application (the
"/*" URL pattern matches the entire web application). The <role-name> defined below (manager)
specifies that only users in the manager role can access the manager web application:

<!-- Define a Security Constraint on this Application -->
<security-constraint>
 <web-resource-collection>
 <web-resource-name>Entire Application</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <!-- NOTE: This role is not present in the default users file -->
 <role-name>manager</role-name>
 </auth-constraint>
 </security-constraint>

The authentication mechanism for the manager application is also defined here. The default setting is
BASIC authentication. Administrators could set up a more rigorous mechanism for manager application
authentication, for example a client certificate-based mechanism (<auth-method> set to CLIENT-CERT):

<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Tomcat Manager Application</realm-name>
 </login-config>

The <security-role> lists all the roles that can log in to the manager application. In this case, it is
restricted to only one user role – the manager role:

 <!-- Security roles referenced by this web application -->
 <security-role>
 <description>
 The role that is required to log in to the Manager Application
 </description>
 <role-name>manager</role-name>
 </security-role>

Chapter 7

142

Manager Application Commands
The manager application commands that are issued via the web browser have the following format:

http://{hostname}:{portnumber}/manager/{command}?{parameters}

In the command above the various parts are:

❑ hostname
The host that the Tomcat instance is running on.

❑ portnumber
The port that the Tomcat instance is running on.

❑ command
The manager command that we wish to run. The allowed values for command are deploy,
install, list, reload, remove, resources, roles, sessions, start, stop, and
undeploy. We shall be looking at these in more detail later in the chapter.

❑ parameters
The parameters passed to the commands listed above. These are command-specific, and are
explained in detail along with the specific command below. Many of these parameters contain
the context path to the web application (the path parameter) and the URL to the web
application file (the war parameter). The context path for the ROOT application is an empty
string. For all other web applications, the context path must be preceded by a '/'. The URL to
the web application can be in one of the following formats:

� file:/absolute/path/to/a/directory
This specifies the absolute path to a directory where a web application is present in an
unpackaged form. This entire path is then added as the context path of the web
application in Tomcat's configuration.

� file:/absolute/path/to/a/webapp.war
This specifies the absolute path to a WAR file. The Tomcat documentation states that this
format is not allowed for the install command. However, our tests with Tomcat 4.1.3
indicate that it works fine for install too.

� jar:file:/absolute/path/to/a/warfile.war!/
The jar protocol allows for specifying the URL for a WAR file. This is handled by the
java.net.JarURLConnection that provides a URL connection to a JAR/WAR file.
Here the URL specified is for a file on the local filesytem.

� jar:http://hostname:port/path/to/a/warfile.war!/
In this case, the URL points to a WAR file on a remote host that is accessible via HTTP.

The "!/" characters at the end of these URLs allow them to be used in a web browser and not cause the
default MIME type action for the .war extension to take effect. For example, if we use the URL shown
below to install a web application and leave out the "!/" at the end, we may be prompted to (depending
on how the browser MIME settings are configured) save to disk, open the file in the browser, or open
the file in an application (for example, Winzip):

http://localhost:8080/manager/install?path=/hello&war=jar:file:/path/to/hello.war!/

There are a number of problems that could occur while working with the manager application. The
possible causes of failure are listed in the Possible Errors section.

Manager Configuration

143

Deploying a New Application (Tomcat 4.1 Only)
The deploy command is new in Tomcat 4.1. It allows users to deploy a web application to a running
instance of Tomcat. The effect of this command is:

❑ The WAR file for the web application is uploaded from the client machine to the machine that
Tomcat is running on, and copied into the application base directory of the given virtual host. For
example, if the virtual host name configured in server.xml were localhost itself, the WAR
file would get copied under $CATALINA_HOME/work/Standalone/localhost/manager.

❑ An entry for the web application's context is added into Tomcat's runtime data structures.

❑ The web application gets loaded.

The two steps above make the web application available for use right away, but there is a final step in
the deploy process:

❑ Tomcat writes out a <Context> entry for this web application into the
$CATALINA_HOME/conf/server.xml file. Due to this, the web application gets loaded each
time Tomcat is restarted. If the WAR file contains a <Context> element definition
(META-INF/context.xml), this context entry takes precedence over the default entry that
the manager application generates.

The general format for the deploy command is shown below:

http://{hostname}:{portnumber}/manager/deploy?path={context_path}

Here hostname and portnumber are the host and port for the Tomcat instance and context_path is
the context path for the application. The WAR file to be deployed is passed inside the request data of
the HTTP PUT request. Therefore, if we were to deploy our hello application that we saw at the
beginning of the chapter at the context path /hello, we would have to do an HTTP PUT to the URL
http://{hostname}:{portnumber}/manager/deploy?path=/hello.

Since the WAR file is passed as the request data, this command cannot be invoked via a web browser.
Instead, it should be invoked from a tool (for example, within an Ant script).

Essentially, the tool that sends the deploy command will have to build an HTTP request that looks something
like that shown below, and execute an HTTP PUT command to send it over to the manager servlet:

Deploy tool
(for example ant task)

HTTP Connection Tomcat
instance with
manager
applicationPUT/manager/deploy?path=/hello HTTP/1.1

Content-type: application/octet-stream
Content-length: nnn
Authentication: Basic <credentials>

<The serialized bytes for the war to be
deployed>

Chapter 7

144

A successful deploy command returns a success message OK – Deployed application at context path
{context_path}. If the operation failed, the error message would start with a "FAIL" string, and contain
the cause for failure.

Tomcat 4.0 has an install command that it calls a deploy command. This is actually true – the
behaviour of the install command is different between 4.0 and 4.1. We shall see this difference in the
next section.

Installing a New Application
The Tomcat 4.0 documentation says that the command called install deploys an application. This is
true, as this command has a permanent effect in Tomcat's configuration. The effect that the Tomcat 4.0
install command has is:

❑ The web application WAR file (or extracted directory) is copied into the application base directory

❑ The web application is started

❑ Tomcat's internal runtime data structures are updated to reflect the new application context

The last two steps ensure that the new web application is available for use right away. The first step (the
copying) makes the installation permanent (that is, across Tomcat restarts).

In Tomcat 4.1, the install option just does the last two steps – updates Tomcat's internal runtime data
structures and starts the application. Thus, if Tomcat is restarted, the web application is not reloaded.
This is the correct behavior for the future, as the install command is meant for developers to test new
web applications, and, once they are happy with them, use the deploy command (shown above) to
update Tomcat's installation.

The general format for the install command URL (in both Tomcat 4.0 and 4.1) is shown below:

http://{hostname}:{portnumber}/manager/install?path={context_path}&war={war_url}

To install from a WAR file, we use the command shown below. Here, file:/path/to/hello.war is
the URL for the local filesystem location of hello.war:

http://localhost:8080/manager/install?path=/hello&war=jar:file:/path/to/hello.war!/

We can also install the extracted web application from a filesystem path (/path/to/hello). We need
to enter the following command in the browser to install the hello application:

http://localhost:8080/manager/install?path=/hello&war=file:/path/to/hello

The command assumes that the hello application is extracted into /path/to/hello:

And the Windows version:

http://localhost:8080/manager/install?path=/hello&war=file:/C:\path\to\hello.war

If this succeeds, a message "OK – Installed application at context path /hello" will be shown in the
browser window. If the operation fails, an appropriate error message is displayed.

The screenshot opposite shows the hello application WAR file (hello.war) being installed with the
context path /hello:

Manager Configuration

145

If we try to rerun this command we get the "Application already exists" error message as shown below. The
context path for a web application is unique – if we wish to update an already installed application, we would
need to either reload it, or remove and install it again. These options are covered later in the chapter:

Tomcat 4.1 introduces two new options in the install command – unfortunately, these are not listed
in the current Tomcat documentation:

http://{hostname}:{portnumber}/manager/install?config={config_url}

http://{hostname}:{portnumber}/manager/install?config={config_url}&war={war_url}

The config_url is the URL for a context configuration file. This file contains the <Context> element
entry for the web application. The document base in the context is used to point to the location of the
WAR file or to the directory where the web application is extracted. The second version of the
command allows us to pass the URL to the WAR file (war_url). This overrides the document base
specified in the context configuration file.

List Installed and Deployed Applications
The format for the list command URL that lists all deployed and installed applications is shown below:

http://{hostname}:{portnumber}/manager/list

The screenshot below shows the list command being run:

Chapter 7

146

As we can see, the first line of the response message contains a string indicating success ("OK – Listed
applications of virtual host {hostname}").

The rest of the response has information on all deployed and installed applications: one web application
per line of response. Each line has the (unique) context path of the web application, the status (running
or stopped), and the number of active sessions for the application. In Tomcat 4.1, the path for the web
application is also shown.

Reload Existing Application
An existing application can be reloaded by accessing the manager application via the URL given below:

http://{hostname}:{portnumber}/manager/reload?path={context_path}

This causes the existing application to shut down and then restart. The application's deployment
descriptor (web.xml) is not reread (at least not in the current version of Tomcat), even though the
Tomcat documentation states that it is. This is a known bug, and it is expected that a future version of
Tomcat will fix it. The workaround is to stop and then start the application again. The server.xml
configuration file is also not reread, but this is by design.

The reload command is useful when we have a web application that has not been configured to be
reloadable. A web application's <Context> entry in the server.xml file has a reloadable attribute.
When this attribute is set to true, Tomcat monitors all its classes in /WEB-INF/classes and
/WEB-INF/lib and reloads the web application if a change is detected. This causes a performance hit
in production environments, as the class loader keeps comparing the date-time stamps for servlets in
memory with those on disk. To avoid this, we can use the reload command to make Tomcat reload
the web application when we change any of its classes.

The standard Java class loader is designed to load a Java class just once – so how does the reloadable
attribute work? Tomcat implements its own custom class loader that is used to reload the classes in
/WEB-INF/classes and /WEB-INF/lib if required. Chapter 9 discusses this topic in more detail.

The current version of Tomcat (4.1.3 Beta) supports reloading only if a web
application has been installed from an unpacked directory. It does not support
reloading if the web application has been installed from a WAR file.

The screenshot below shows the error message we get when we try to reload the hello application that
we had installed earlier from a WAR file:

Manager Configuration

147

There seems to be a bug with Tomcat 4.1.8 (Beta) with the reload command.
However, it is not a serious one. The message displayed on the browser doesn't show
the context_path (/hello in this case) as in the above screenshot. All other
commands give the correct messages.

The workaround with a WAR file is to either restart Tomcat or remove and then install the
application again.

A successful execution of the reload command returns an "OK – Reloaded application at context path
{context_path}" message, where {context_path} is the context path for the application.

List Available JNDI Resources (Tomcat 4.1 Only)
The general format of the URL for listing available JNDI resources is:

http://{hostname}:{portnumber}/manager/resources[?type={jndi_type}]

In the URL above, the type argument is optional. When it is not specified, all the available JNDI
resources are listed. Otherwise, JNDI resources corresponding to the specified type alone are listed. The
type field needs to be a fully qualified Java class name. For example, for JDBC data sources, the type
needs to be specified as javax.sql.DataSource:

http://localhost:8080/manager/resources?type=javax.sql.DataSource

The response to this contains a success string ("OK – Listed global resources of all types" or "OK –
Listed global resources of type {jndi_type}") followed by information about the resources – one per
line. Each line contains the global resource name and the global resource type. The global resource
name is the name of the JNDI resource as specified in the global attribute of the <ResourceLink>
element in Tomcat's configuration. The global resource type is the fully qualified Java class name of this
JNDI resource:

List the Available Security Roles (Tomcat 4.1 Only)
The URL for listing all security role names is:

http://{hostname}:{portnumber}/manager/roles

On successful execution, the output of this command is an "OK – Listed security roles" message,
followed by the security role name and a (optional) description. There is one security role listed per
line, and the fields are ":" separated as before:

Chapter 7

148

The security roles listed by this command are those that are defined in the user database. The manager
application's configuration defines the user database resource that should be looked up for the roles in
its <ResourceLink> section.

Stop an Existing Application
We can use the manager application to stop a running application. The URL below shows how this can
be done:

http://{hostname}:{portnumber}/manager/stop?path={context_path}

This command sends a signal to the web application to stop. This application is no longer available to
users, though it still remains deployed. If we run the list command again, the state of the application
would be shown as "stopped":

If the application stops successfully, the message "OK – Stopped application at context path
{context_path}" is displayed. If the operation fails, a FAIL message with appropriate error
information is shown.

The application can be restarted using the start command that is shown next.

Start a Stopped Application
We can use the manager application to start a stopped application. The URL below shows how this can
be done:

http://{hostname}:{portnumber}/manager/start?path={context_path}

Here {context_path} is the context path for the web application (empty string for the ROOT
application).

Manager Configuration

149

If the application starts successfully, the message "OK – Started application at context path
{context_path}" is displayed:

If the operation fails, a FAIL message with appropriate error information is shown.

Remove an Installed Application
The format of the remove command URL is listed below:

http://{hostname}:{portnumber}/manager/remove?path={context_path}

This command is the opposite of the install command – it signals the web application to shut down
gracefully, and then makes the application context available for reuse. This is done by removing the
context entry from Tomcat's runtime data structures.

We had seen earlier that the Tomcat 4.0 install command behaves like a deploy command, as it
copies the web application over to $CATALINA_HOME/webapps. Does the remove command undo this
and remove the web application directory and/or the WAR file? It should, but due to a bug in Tomcat,
it does not. We need to manually remove the extracted web application directory:

The screenshot above shows the web application running at context path /hello being removed. Its
context entry is deleted from Tomcat's internal runtime data structures, hence any attempt to access
http://localhost:8080/hello will now fail.

If the application is removed successfully, the message "OK – Removed application at context path
{context_path}" is displayed.

Undeploy a Web Application (Tomcat 4.1 Only)
This command should be used with care – it deletes the web application directory that was created
when the application was deployed. If we do not want the web application to be removed permanently,
but only removed for the current Tomcat lifetime, we would use the remove command.

Chapter 7

150

This command first signals the application to shut down (if it is still running) and then deletes the web
application directory and the application WAR file. It then removes the <Context> entry for the web
application from $CATALINA_HOME/conf/server.xml. Tomcat 4.1.3 Beta has a bug due to which
the <Context> entry does not get removed – users need to manually edit server.xml.

In short, the undeploy command does the opposite of the deploy command that we described earlier in
the chapter. However, the undeploy command works only on applications installed in the application
base directory of the virtual host (the location where the deploy command put the web application WAR
files) and so cannot be used for applications that were not deployed using the deploy command.

The URL for the undeploy command is listed below:

http://localhost:8080/manager/undeploy?path={context_path}

If the application undeploys successfully, the message "OK – Undeployed application at context path
{context_path}" is displayed. If the operation fails, a "FAIL" message with appropriate error information
is shown.

Display Session Statistics
We can use the manager application to get statistics about a particular web application. The statistics
shown are the default session timeout and the number of current active sessions.

The URL for accessing this information is:

http://localhost:8080/manager/sessions?path={context_path}

For example, we can check the statistics for the hello application using the command
http://localhost:8080/manager/sessions?path=/hello:

Tomcat Web Application Manager (4.1.7 Beta Only)
As we discussed earlier, the latest version of Tomcat (4.1.7 Beta) introduces a new web interface for the
manager application. This interface allows us to start, stop, remove, reload, and install web applications
without having to type the command URL. It does not allow for the entire manager application task
though – we cannot deploy/undeploy or view security roles or JNDI resources.

To access the web application manager access http://localhost:8080/ and click on the Tomcat Manager
link on the left-hand side on the Tomcat home page as shown in the screenshot opposite:

Manager Configuration

151

You will then be prompted for a username and password. This will then lead you to the manager
application home page as shown in the screenshot below:

Chapter 7

152

We can then start, stop, reload, and remove web applications by clicking on the relevant links provided
at the end of each application.

In Tomcat 4.0 and 4.1.3, the manager tasks were handled by a servlet called the ManagerServlet
(org.apache.catalina.servlets.ManagerServlet). In Tomcat 4.1.7, the new interface is
HTMLManagerServlet. This class extends the ManagerServlet and internally invokes the same
commands (install, uninstall, and so on) that we discussed earlier in the chapter.

The Applications table has five columns:

❑ Path
This lists the web application path. The path name links to the URL for the web application.

❑ Display Name
This is picked up from the <display-name> element in the application's deployment
descriptor (web.xml).

❑ Running
The running status for the application – true if the application is running and false otherwise.

❑ Sessions
The number of active session for the web application. Clicking on the link for the number of
sessions, we get to the session statistics for that particular web application. This internally
invokes the sessions command that we saw earlier (repeated below).

http://{hostname}:{portnumber}/manager/sessions?path={context_path}

❑ Finally, we have the links to the start, stop, reload, and remove commands for the web
application. We saw these commands earlier, but using the web application manager saves us
from the effort of typing a command URL for performing these tasks.

Installing a Web Application
We can also install a new web application using the manager tool. In this section, we will install the
hello web application. Enter the context path for the web application; in this case it will be /hello.
This allows us to access it at the URL http://<host>:<port>/hello.

Next, the config URL – this is an optional field that allows us to specify the URL to a context file. The
context file contains a <Context> element entry for the web application. This way we can have the
web application context configured with attributes (such as reloadable, privileged, and so on) that
are different from the defaults assigned during an install.

Due to a bug in the web application manager, the config URL gets passed as an empty
string to the install command (instead of being passed as a null string). This
causes the manager web application to report an error. We therefore have to specify
the config URL.

A sample config context file could have the following contents:

<Context path="/hello" docBase="/path/to/hello" debug="0"
 reloadable="true" crossContext="true">
</Context>

Manager Configuration

153

Save this in a file (say context.xml) and specify the URL to this file in the context URL field (for
example, file:/path/to/context.xml on Unix or file:/c:\path\to\context.xml on Windows). The docBase
attribute in the <Context> element is optional – if we specify one, it overrides the web application
WAR file URL (the next attribute).

Finally, a URL to the WAR file or an extracted web application directory should be given. The format
for this is the same as discussed in the Manager Application Commands section. For example, we could
specify this as file://home/wrox/hello.war.

After successfully executing the install command by clicking on the Install button, Tomcat adds
another row for our application in the list of applications installed/deployed:

Possible Errors
There are a number of things that could go wrong while working with the manager application. The
possible causes of failure are listed below:

❑ Application already exists at path {context_path}
A web application already exists at the path specified. The context path for each web
application must be unique. We would get this error if there is another application with the
same context path – this can be the same application (that is, we tried to deploy twice) or a
different one. To fix this, we have to either undeploy/remove the previous application, or
choose a different context path.

❑ Encountered exception
An exception occurred while trying to start the web application. The Tomcat log files will
have error messages relating to the specific error. Typical causes of error are missing
classes/JAR files while loading the application and invalid commands in the application's
web.xml file.

Chapter 7

154

❑ Invalid context path specified
The context path must start with a '/'. The exception to this is when the ROOT web application
(that is, at context path '/' itself) is being deployed, in which case the context path must be a
zero-length string.

❑ No context path specified
The context path is mandatory.

❑ Document base does not exist or is not a readable directory
The value specified for the WAR file path/URL in the war parameter is incorrect. This
parameter must point to an expanded web application or an actual WAR file.

❑ No context exists for path {context_path}
The context path is invalid – there is no web application deployed corresponding to it.

❑ Reload not supported on WAR deployed at path {context_path}
The web application had been installed from a WAR file, instead of from an unpacked
directory. The current version of Tomcat does not support this.

❑ No global JNDI resources
No JNDI global resources were configured for this Tomcat instance.

❑ Cannot resolve user database reference
There was an error looking up the appropriate user database. For example, in the case of the
roles stored in a JNDI realm, a JNDI error would result in such a message. Tomcat's log files
would have more error information.

❑ No user database is available
The <ResourceLink> element has not been configured properly in the
manager.xml configuration file. See the Manager Application Configuration section
above for more information.

Managing Applications with Ant (Tomcat 4.1 Only)
Tomcat 4.1 allows for these administration commands to be run from an Ant script (Ant installation is
covered in Chapter 3 with extra information in Chapter 17). This is convenient for development
purposes as the Ant build file could be used to compile, deploy, and even start a web application. The
steps for doing this once Ant is installed are:

❑ Copy the $CATALINA_HOME/server/lib/catalina-ant.jar file into Ant's library
directory ($ANT_HOME/lib). This JAR file contains the Tomcat management task definitions
for Ant.

❑ Add $ANT_HOME/bin to your PATH.

❑ Add a user with the manager role to Tomcat's user database if such a user does not exist.

❑ Now add <taskdef> elements to your custom build.xml script that call the Tomcat
manager commands.

A sample build.xml is shown opposite. This builds and deploys the hello web application that we
discussed at the beginning of the chapter. Here is the build.xml script:

Manager Configuration

155

<project name="HelloApplication" default="compile" basedir=".">

 <!-- Configure the directory into which the web application is built -->

 <property name="src" value="."/>

 <property name="build" value="${basedir}/build"/>

 <!-- Configure the context path for this application -->

 <property name="path" value="/hello"/>

The <project> tag has attributes for the name of the project and the default target. The default target
in this case is called compile. Running Ant with no options will invoke the tasks associated with this
default target. The basedir attribute is the base directory for all path calculations in the Ant build
script. This is set to "." (the current directory) and therefore all the paths for the build process are taken
to be relative to the directory we run ant from. We then define properties for the build, such as the
location of the source directory and the target directory where the compiled .class files will go.
The properties below specify the access URL and username/password for the manager application. We
will later see how we can pass the password from the command line too:

 <!-- Configure properties to access the Manager application -->

 <property name="url" value="http://localhost:8080/manager"/>

 <property name="username" value="myusername"/>

 <property name="password" value="mypassword"/>

The task definitions for the manager application are now specified. Ant allows for custom tasks that
extend its functionality. Tomcat implements the custom tasks shown below for executing the manager
application commands. For example, org.apache.catalina.ant.DeployTask executes the
deploy command against the manager application:

 <!-- Configure the custom Ant tasks for the Manager application -->

 <taskdef name="deploy"

 classname="org.apache.catalina.ant.DeployTask"/>

 <taskdef name="install"

 classname="org.apache.catalina.ant.InstallTask"/>

 <taskdef name="list"

 classname="org.apache.catalina.ant.ListTask"/>

 <taskdef name="reload"

 classname="org.apache.catalina.ant.ReloadTask"/>

 <taskdef name="remove"

 classname="org.apache.catalina.ant.RemoveTask"/>

 <taskdef name="resources"

 classname="org.apache.catalina.ant.ResourcesTask"/>

 <taskdef name="roles"

 classname="org.apache.catalina.ant.RolesTask"/>

 <taskdef name="start"

 classname="org.apache.catalina.ant.StartTask"/>

 <taskdef name="stop"

 classname="org.apache.catalina.ant.StopTask"/>

 <taskdef name="undeploy"

 classname="org.apache.catalina.ant.UndeployTask"/>

Chapter 7

156

Next is the Ant target that does initializations – in this case, create the build directory:

 <target name="init">
 <!-- Create the build directory structure used by compile -->
 <mkdir dir="${build}"/>
 <mkdir dir="${build}/hello"/>
 <mkdir dir="${build}/hello/Web-INF"/>
 <mkdir dir="${build}/hello/Web-INF/classes"/>
 </target>

The default compile target is shown below. This has Ant instructions to compile all the Java files into
class files. Our hello application doesn't have any class files, so nothing will be done, but any serious
web application will contain Java files. Notice how the compile task depends on the init task – this
ensures that the initializations steps are performed before Ant compiles the Java files:

 <!-- Executable Targets -->
 <target name="compile" description="Compile web application"
 depends="init">
 <javac srcdir="${src}" destdir="${build}"/>
 </target>

The build target builds the application WAR file. It has instructions to move the files to the correct
directory format for a web application and build the WAR file:

 <target name="build" description="Build web application"
 depends="compile">
 <copy file="index.html" toDir="${build}/hello"/>
 <copy file="Hello.jsp" toDir="${build}/hello"/>
 <jar destfile="${build}/hello.war" basedir="${build}/hello"/>
 </target>

Finally, we have the manager tasks for listing all web applications, and installing/uninstalling and
deploying/undeploying web applications:

 <target name="list" description="List all web applications">
 <list url="${url}" username="${username}" password="${password}"/>
 </target>

 <target name="install" description="Install web application"
 depends="build">
 <install url="${url}" username="${username}" password="${password}"
 path="${path}" war="file:${build}/hello"/>
 </target>

 <target name="reload" description="Reload web application"
 depends="build">
 <reload url="${url}" username="${username}" password="${password}"
 path="${path}"/>
 </target>

 <target name="remove" description="Remove web application">
 <remove url="${url}" username="${username}" password="${password}"
 path="${path}"/>
 </target>

 <target name="deploy" description="Deploy web application"
 depends="build">
 <deploy url="${url}" username="${username}" password="${password}"

Manager Configuration

157

 path="${path}" war="file:${build}/hello.war"/>
 </target>

 <target name="undeploy" description="Undeploy web application">
 <undeploy url="${url}" username="${username}" password="${password}"
 path="${path}"/>
 </target>

</project>

Before using the Ant script, we must add the $CATALINA_HOME/server/lib/catalina-ant.jar to
the classpath and the Ant install directory to our system path (we used Ant 1.5 for our testing):

$ CLASSPATH=$CLASSPATH:$CATALINA_HOME/server/lib/catalina-ant.jar
$ PATH=$PATH:/path/to/ant1.5/bin
$ export CLASSPATH PATH

The password property in the Ant script contains the password for the user with manager privileges.
This is useful for development environments where we don't want to specify the password each time we
build and deploy.

This value can be overridden from the command line, or even omitted from the build file altogether
and passed only from the command line. This avoids the security risk of putting the password in a
cleartext file:

$ ant –Dpassword=secret list

The ability to run the manager commands from within Ant files allows for a very integrated
develop-deploy-test cycle for web application development. For instance, after developing the HTML
pages, servlets, JSP pages, and other Java classes for the web application, the developer would need to
compile all the Java code:

$ ant build

The build target in our build.xml file compiles all the Java code and puts the class files into the
appropriate location (the /WEB-INF/classes directory). It then builds the deployable JAR file.
Developers may need to fix compilation errors, if any, and then rerun the ant command.

Next, they can use the install target to install the web application in the Tomcat instance specified in
the Ant build file. The install target uses the Tomcat manager application's install command to
install the web application:

$ ant install

This installed application can then be tested, and errors ironed out. During each iteration, developers
would fix bugs, recompile, and then restart the web application:

$ ant compile reload

Once the application is stable, the developers can remove it from the Tomcat installation:

$ ant remove

Chapter 7

158

This web application can then be packaged as a WAR file and distributed to end users. They can then
deploy the application in the production Tomcat installation:

$ ant deploy

The reload, remove, and deploy Ant targets shown above invoke the reload, remove, and deploy
commands of the Tomcat application manager.

Tomcat Administration Tool (Tomcat 4.1 Only)
Tomcat 4.1 introduces a new web-based administration tool. This allows administrators to visually edit
the configuration parameters of Tomcat 4.1. These parameters are defined in Tomcat's configuration
files (server.xml, tomcat-users.xml, and so on). Administrators of earlier versions had to
manually edit the XML configuration files – a process that was error-prone and painful. For a more
detailed description of these parameters and the configuration files, please see Chapter 5.

The admin tool can be accessed via the following URL:

http://{hostname}:{portname}/admin/index.jsp

As before, access to this application is restricted to users with admin roles. The screenshot below shows
the administration tool:

Manager Configuration

159

Admin Application Configuration
Access to the Tomcat 4.1 admin application is restricted in a manner similar to the manager
application. The following is the memory realm user database file
($CATLINA_HOME/conf/tomcat-users.xml) that defines the admin role and sets the username and
password:

<tomcat-users>
 <role rolename="admin"/>
 <role rolename="manager"/>

 ...
 <user username="admin" password="admin" roles="admin,manager"/>

</tomcat-users>

The configuration for the admin application is specified in the
$CATALINA_HOME/webapps/admin.xml configuration file. The default configuration is shown below:

<Context path="/admin" docBase="../server/webapps/admin"
 debug="0" privileged="true">

 <Logger className="org.apache.catalina.logger.FileLogger"
 prefix="localhost_admin_log." suffix=".txt"
 timestamp="true"/>

</Context>

The other configuration file for the admin application is the deployment descriptor
($CATALINA_HOME/server/webapps/admin/WEB-INF/web.xml). This defines, among other
things, the security constraints for the admin application and also the authentication mechanism for
admin users.

To illustrate, the following extract from the web.xml file shows that only users with the admin role can
access the admin application:

<security-constraint>
 <display-name>Tomcat Server Configuration Security Constraint</display-name>
 <web-resource-collection>
 <web-resource-name>Protected Area</web-resource-name>
 <!-- Define the context-relative URL(s) to be protected -->
 <url-pattern>*.jsp</url-pattern>
 <url-pattern>*.do</url-pattern>
 <url-pattern>*.html</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <!-- Anyone with one of the listed roles may access this area -->
 <role-name>admin</role-name>
 </auth-constraint>
 </security-constraint>

Chapter 7

160

The Future
The manager application documentation states that there are plans to add a web service-based interface
for Tomcat manager applications. Once this is done, the management tasks can be easily integrated
with third-party applications, or triggered from non-Java/non-web-based client programs. However, the
proposed feature list for Tomcat 5.0 (the next release) does not include this.

The proposed 5.0 features do mention adding JMX (Java Management Extensions) support to the
Coyote connector. The Coyote connector provides both a native HTTP stack for Tomcat (the Coyote
HTTP/1.1 connector) as well as allowing Apache and other web servers to tie in to Tomcat (the Coyote
JK2 connector). JMX is a new Java technology from Sun for managing and monitoring applications.
However, it is still unclear what the JMX support in Tomcat 5.0 will look like.

Summary
In this chapter we saw the administration capabilities of the Tomcat 4.x manager application and the
Tomcat 3.x admin commands.

Securing access to the manager application is important. Someone who gains unauthorized access to it
can deploy malicious applications, or cause a Denial of Service (DoS) by shutting down running
applications. Administrators concerned about security could configure the network to disallow access to
the manager application URL from hosts outside the local network, or, if they are paranoid, even
disable the manager web application altogether.

Manager Configuration

161

Chapter 7

162

